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Abstract 
 
The units found strongly efficient in DEA studies on efficiency can be divided into 
self-evaluators and active peers, depending on whether the peers are referencing any 
inefficient units or not. The contribution of the paper starts with subdividing the self-
evaluators into interior and exterior ones. The exterior self-evaluators are efficient “by 
default”; there is no firm evidence from observations for the classification. These units 
should therefore not been regarded as efficient, and be removed from the observations 
on efficiency scores when performing a two-stage analysis of explaining the distribution 
of the scores. A method for classifying self-evaluators based on the additive DEA model 
is developed. The application to municipal nursing- and home care services of Norway 
shows significant effects of removing exterior self-evaluators from the data when doing 
a two-stage analysis. 
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1. Introduction 
 

The calculation of efficiency scores for production units based on a non-parametric piecewise 

linear frontier production function, is well established within the last two decades. Originally 

introduced by Farrell (1957) the method was further developed in Charnes, Cooper and 

Rhodes (1978), where the term the DEA model was coined. The efficient units span the 

frontier, but the classification of some of these units as efficient is not based on other 

observations being similar, but due to the method. We are referring to units, which are 

classified as being self-evaluators in the literature (Cooper, Seiford and Tone, 2000). Self-

evaluators may most naturally appear at the “edges” of the technology, but it is also possible 

that self-evaluators appear in the interior. It may be of importance to distinguish between the 

self-evaluators being exterior or interior. Finding the influence of some variables on the level 

of efficiency by running regressions of efficiency scores on a set of potential explanatory 

variables, is an approach often followed in actual investigations.1 Using exterior self-

evaluators with efficiency score of 1 may then distort the results, because to assign the value 

of 1 to these self-evaluators is arbitrary. But regarding interior self-evaluators they may have 

peers that are fairly similar. They should then not necessarily be dropped when applying the 

two- stage approach.  

 

The plan of the paper is to review the DEA models in Section 2 and define the new concepts 

of interior and exterior self-evaluators.  In Section 3 the method for classifying the self-

evaluators is introduced. Actual data are presented in Section 4 and the method for classifying 

self-evaluators is applied. The effect of removing exterior self-evaluators is tested.  Section 5 

concludes. 

 
 
2. Self-evaluators 

 

                                                 
1 The approach was originally introduced in Seitz (1967), inspired by Nerlove (1965), see Førsund and 
Sarafoglou (2002). Simar and Wilson (2003) review the approach and find it at fault in general due to serial 
correlation between the efficiency scores, and provides a new statistically sound procedure based on specifying 
explicitly the data generating process and bootstrapping to obtain confidence intervals. 



 3

DEA models 

Consider a set, J, of production units transforming multiple inputs into multiple outputs. Let 

ymj be an output ),( JjMm ∈∈  and xnj an input ),( JjNn ∈∈ . As the reference for the units 

in efficiency analyses we want to calculate a piecewise linear frontier based on observations, 

fitting as closely as possible and obeying some fundamental assumptions, like free disposal, 

and the technology set being convex and closed as usually entertained (Banker et al., 1984, 

Färe and Primont, 1995). This frontier can be found by solving the following LP problem, 

termed the additive model in the DEA literature (Charnes et al., 1985):  

 

 

 

 

                                                                                      (1) 

 

 

 

 

 

The last equality constraint in (1) imposes variable returns to scale (VRS) on the frontier, 

while dropping this constraint imposes constant returns to scale (CRS).  Our analysis will be 

valid for both scale assumptions. The frontier is found by maximising the sum of the slacks on 

the output constraints, +
mis , and input constraints, −

nis . The strongly efficient units (using the 

terminology of Charnes et al., 1986) are identified by all the slack variables being zero. All 

weights, ijλ , must be zero except the weight for itself that will be one (i.e. 

1,0 =≠= iiij jifor λλ  if i is an efficient unit).2 The efficient points will appear as vertex 

points on the frontier function surface, or corner points of facets. The sets of strongly efficient 

units, P, and the inefficient units, I, are: 
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So far we only have slacks as measures of inefficiency. If we want only one measure for each 

unit, and a measure that is independent of units of measurement, the Farrell (1957) measure of 

technical inefficiency is the natural choice. The standard DEA model on primal (enveloping) 

form is set up as a problem of determining the Farrell technical efficiency score, Eoi, (o = 1,2), 

either in the input- (o = 1) or the output (o = 2) direction for an observation, i. The following 

LP model is formulated for each observation in the case of input-orientation: 

 

1
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                                                                                                   (3) 

In the case of output orientation we have the following LP program: 
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                                                                                                   (4) 

For notational ease the same symbols have been used for weights in (1), (3) and (4). The 

proportionality factor, θi or φi, and the weights, λij , are the endogenous variables.  

 

Adopting the notation #N and #M for the number of inputs and outputs respectively, the point  

1 # , 1 #( ,.., ,.., )ij j ij Nj ij j ij Mj
j P j P j P j P

x x y yλ λ λ λ
∈ ∈ ∈ ∈
∑ ∑ ∑ ∑                                                                          (5) 

is per construction on the frontier surface, and is defined as the reference point for unit i. If 

there are no slacks on the output- and input constraints in (3) or (4) then the reference points 

coincide with the radial projection point, using either θi or φi when adjusting an inefficient 

observation. These points will normally be interior points on facets (but may fall on border 
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lines). With one or more slacks positive the reference point and the radial projection point 

differ. The reference points will again appear as vertex points on the frontier function surface, 

or corner points of facets.  

 

It is well known that the radial Farrell efficiency measure Eoi may be one, but that the unit 

may still improve its performance by either using less inputs or producing more outputs. All 

units with a radial efficiency score of one are by definition located on the frontier, but it is 

only for the strongly efficient units that the reference points coincide with the observation. A 

unit may have Eoi =1, but one or more of the constraints in (3) or (4) being non-binding (i.e. 

one or more slacks positive or zero shadow prices on the constraints in question).  

 

Although the model (3) or (4) can be solved directly by letting the index j run over all 

observations in J, a two-stage procedure of solving (1) first is often followed. By using the 

information on strongly efficient units when solving (3) or (4), the LP computations are done 

more efficiently, and one will only identify reference points by (5) that are in the strongly 

efficient subset of the frontier. 

 

In the context of the DEA models (3) and (4) the strongly efficient units are termed peers. For 

each inefficient unit, i, a Peer group set, Pi, may be formed: 

{ } IiPpP ipi ∈>∈= ,0:λ                                                                                                          (6) 

If the Peer group sets are empty, then all the units are efficient. The solutions to (1), (3) or (4) 

do not identify facets systematically, but by using (6) we can identify the corner points of 

facets where one or more radial projection points of inefficient units are located. 

 

It will also turn out useful to look at the group of inefficient units referenced by a peer. Such a 

set is defined for each peer, p, as the Referencing set in Edvardsen and Førsund (2001) with 

reference to the solutions of (3) or (4): 

{ }: 0 ,p ipI i I p Pλ= ∈ > ∈             (7) 

  

 

The self evaluators 

The Referencing set (7) may be empty. This is the definition of a self-evaluator: 
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Definition 1: A peer Pp∈ , where the set P is defined in (2), is a self-evaluator if ØI p = , 

where Ip is defined in (7). 

  

The set of peers may be partitioned into a set of self-evaluators, PS, and a set, PA, of active 

peers, i.e. peers with non-empty referencing sets:                    

{ }
{ }

PPP

ØIPpP

ØIPpP

AS

p
A

p
S

=∪

≠∈=

=∈=

:

:

                                                                                                               (8) 

The self-evaluators are vertex points of facets without any reference points defined as the 

radial projection points of inefficient observations located on these facets. The LP solutions to 

(3) or (4) do not give us any information as to which efficient units constitute the vertex 

points of such a facet without reference points. An efficient unit may be a vertex point for 

many facets. Our definition of a self-evaluator implies that there must not be reference points 

on any of its facets.  

 

There are two possibilities as to the location of facets formed by self-evaluators on the frontier 

surface. Such facets may be part of the extreme areas of the frontier, i.e. facets closest to the 

axes in the case of CRS, or facets, in case of VRS, also most far away from the origin or 

closest to the origin (the VRS frontier will in general not contain the origin). In the case of 

CRS only mixes of inputs or outputs may be extreme, while in the case of VRS we in addition 

have the scale dimension. Such self-evaluators will be termed exterior self-evaluators. In the 

case of CRS facets without any reference points may also be found in the interior of the 

frontier surface with respect to mixes, while for VRS interior also means interior regarding 

scale. Such self-evaluators will be termed interior self-evaluators. 

 

Figure 1 shows the two different cases in the simplest case of two dimensions. The points A, 

B, C, D, F and G are efficient, while O1 is inefficient. The radial reference or projection point 

for unit O1 is a in the case of input orientation. The reference point (5) in this simple case 

coincides with the peer A. Considering output-orientation the peers are D and F, and the 

reference point is d. To illustrate the referencing set of a peer Figure 1 shows the referencing 

zone for the efficient unit D in the case of output orientation. All the inefficient units being in 

unit D’s referencing set must be located here (such inefficient units may also appear in 

referencing sets of other peers; here unit F’s). If the referencing zone is empty then the peer is 
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a self-evaluator. Removal of such a unit will not change any of the efficiency scores for other 

units. We would expect the self-evaluators to be extreme points in one or more of the mix or 

scale dimensions, but if the referencing zone is narrow a self-evaluator may also be centrally 

placed within the set of observations. A narrow zone means that other peers are close to the 

self-evaluator.  

 

 

 
Figure 1: DEA and the two types of self evaluators 

 

Notice that the classification as a self-evaluator is dependent of the orientation of the 

efficiency measure. Considering output orientation we have that both B and C are interior 

self-evaluators, while A and G are exterior self-evaluators. Considering input orientation we 

have that B, C, D and F are interior self-evaluators, while G is an exterior one. 

 

 

 



 8

3. The determination of type of self-evaluator 
 

Our purpose is to develop a method for classification into exterior or interior self-evaluators 

only using the standard DEA format.   

 

Enveloping from below 

The production set is by construction convex. If all inefficient units are removed from the data 

set, and a new run is done with only the efficient units, we will find the exterior peers by 

reversing the enveloping of the data from “above” to be from “below”. All that needs to be 

done is to reverse the inequalities in the LP program (1) by adding the slack variables instead 

of subtracting: 

 

 

 

                       

(9)          

 

 

                                                                                          

 

 

 

Notice that we are only considering observations belonging to the set of strongly efficient 

units determined by solving (1). This envelopment of the data is by construction concave. 

 

The units that turn out as “efficient” in solving (9), in the sense that all slacks are zero, must 

be units belonging to the exterior facets in the solution to the original model (1). We will use 

this result to define exterior and interior strongly efficient units: 

 

 

Definition 2: A strongly efficient unit belonging to the set P defined by (2) is exterior if it 

belongs to the set PE: 
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where the slack variables, −+
npmp s,s  , are solutions to the problem (9). 

A strongly efficient unit belonging to the set P defined by (2) is interior if it belongs to the set 

{ }:

( )

I E

E I

P p P p P

P P P

= ∈ ∉

∪ =
                                                                                    (11) 

where the set PE is defined in (10). 

 

To determine the nature of a self-evaluator an orientation for the calculation of the Farrell 

efficiency measures has to be chosen, i.e. either input- or output orientation. The following 

definition can then be made as to the classification of self-evaluators: 

 

Definition 3: Consider a peer Pp∈ , where the set P is defined in (2), that is a self-

evaluator, SPp∈ , where the set PS is defined in (8) and found by running either the input-

oriented program (3), or the output-oriented program (4). If EPp∈ , where the set PE is 

defined in (10), then p is an exterior self-evaluator. If EPp∉ then p is an interior self-

evaluator: 

{ }
{ } )PPP(Pp:PpP

,Pp:PpP
SSISEESSI

ESSE

=∪∉∈=
∈∈=

                                                                           (12)                         

where PSE and PSI are the sets of the exterior and interior self-evaluators respectively. 

 

Illustrating the approach using Figure 1, we have that the new “from below frontier” will be 

the line from A to G, thus these units are the only ones on the “from below frontier” and 

therefore exterior points in PE. This classification is independent of orientation, and they are 

both being located on exterior facets in the original problem (1). In the case of output 

orientation the self-evaluators B and D, according to solving problem (4), will not appear on 

the new frontier, and they are therefore interior according to Definition 3. The self-evaluator 

G appears on the new frontier and is therefore exterior. In the case of input orientation solving 

problem (4) gives B, C, D, F and G as self-evaluators, and we have that B, C, D, and F are 

interior self-evaluators and G an exterior one. 

 

Figure 2 provides another illustration. In a two-dimensional input space an isoquant is shown 

in the efficient units A, B, C and D. Consider input orientation and CRS. Assuming inefficient 

units are only located northeast of the isoquant segment AB in the cone delimited  
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Figure 2. Determining the type of self-evaluator 
 
 
by the rays going through the points A and B, we have that C is an interior self-evaluator, and 

D is an exterior self-evaluator. Running the “reverse” program (9) we will envelope the four 

peers from “behind” by the broken line from A to D. We then know that units A and D are 

exterior, and using the information from running the DEA model (1) we then have that unit C 

is an interior self evaluator, and unit D an exterior one. 

 

It may also be of interest to classify the active peers according to the type exterior and 

interior. Building on definition 3 we have. 

 

Definition 4.  The active peers defined in (8) belong to the subsets PAE and PAI: 
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where PE and PI are defined in (10) and (11) respectively. 

 

The program (9) is not the standard DEA additive formulation, since the sign of the slacks in 

the restrictions on inputs and outputs have been changed. However, by negating these 

restrictions, (9) can be rewritten as: 
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                                                                                          (14) 

                                                                                          

Comparing (1) and (14) we see that these are identical except that inputs and outputs are 

exchanged. Since existing DEA software often will solve the additive model (1), we may as 

well for convenience find the set of exterior self-evaluators PSE by exchanging inputs and 

outputs and running (14) on the strongly efficient units, rather than running (9) on these units. 

 

4. An empirical application 
 

The data 

We will apply the method for determining interior and exterior self-evaluators on a cross 

section data set of the nursing and home care sector of Norwegian municipalities. The data is 

found in Edvardsen et al. (2000). The primary data source is the official yearly statistics for 

municipal activities published by Statistics Norway. Resource usage is measured by financial 

data and number of man-years of different categories. Production data contains mainly the 

number of clients dealt with by institutionalised nursing, home based nursing, and practical 

assistance. Quality information is lacking, but the clients are split on some age groups that 

may be of significance for resource use.  In cooperation with representatives form the 

municipalities and the ministries of Finance, Municipal and regional affairs, and Social and 

health affairs we have chosen to split the clients on two major age groups, 0-66 and above 66 

(67+), and use institutions and home care as separate outputs. Within institutions there are 

also a number of short-stay clients, either coming on a day care basis or on limited stay of 

convalescence.  These usually require fewer resources than the permanent clients.  As 

indicators of quality of institutions we have information of number of single person rooms 

and on clients staying in closed wards. The separation is regarded both as a quality factor for 
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the clients taken care of (demented cases), and for the other clients. In home-based care 

mentally disabled may be quite resource demanding. They may also be found in the 0-66 age 

group within institutions. There is no information on how long time a home visit may last or 

how often it is received. Such information would obviously have given us some quality 

indicators. We also run the risk of municipalities cutting down on both length and number of 

visits showing the same number of clients receiving a more generous support in other 

municipalities. 

 

To ensure that the data quality was good enough we entered a phase of quality control. We 

strongly feel that one should not automatically remove outliers, but if possible connect with 

the municipality in question and ask if the data is correct. This is especially important if the 

methodology is frontier based (such as DEA) because the units defining the frontier are 

outliers by definition. This led to many changes in the dataset and required quit a lot of work, 

but as a result we could be much more confident in the quality of the data (see Aas (2000) for 

details). 

 
 
 
Table 1: Primary variables used in the DEA model, cross-section 1997 of 469 municipalities. 

  Average Standard 
deviation 

Min Max 

Inputs      
Trained Nurses x1 31.1 41.4 1.5 410.4
Other Employees x2 137.4 169.4 5.3 1821.5
Other expenses x3 9066.2 13449.5 190.0 108990.0

Outputs: No. of Clients   
Institutions, age 0-66 y1 3.4 4.9 0.0 50.0
Institutions, age 67+ y2 87.7 108.6 0.0 1024.0
Short-term stay y3 113.8 163.3 0.0 1614.0
Closed wards y4 11.8 19.3 0.0 195.0
Single person room y5 65.7 82.2 0.0 747.0
Mentally disabled y6 48.7 79.5 0.0 857.0
Practical assistance, 0-66 y7 51.3 66.3 0.0 597.0
Practical assistance, 67+ y8 212.7 272.4 1.0 2190.0
Home based nursing, 0-66 y9 34.1 45.3 0.0 407.0
Home based nursing, 67+ y10 125.8 153.3 1.0 1480.0

 

 

Table 1 shows descriptive statistics for the variables used in the DEA model. The first three 
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rows measure the inputs in the model. Trained nurses and Other Employees shows us that 

about 18% of the employees (measured in man-years) are trained nurses. Other expenses are 

measured in 1000 NOK (Norwegian currency). The last 9 rows in table 1 measure the outputs. 

Inst0-66 and Inst67+ are the number of institutionalized clients in the age groups 0-66 and 

above 67 respectively. Short-stay shows how many visits the institutions in the municipality 

have gotten from clients who are not residents, while Clients in closed ward shows how many 

of the residents are in a special ward for dementia clients. Mentally disabled shows how many 

of the clients are mentally disabled (almost all of these clients get home care). Practical 

assistance 0-66 and Practical assistance 67+ counts how many clients get practical assistance 

(such as cleaning and making food) in the indicated age groups, while Home based nursing 0-

66 and Home based nursing 67+ count the same for clients getting nursing services in their 

own homes. 

 

The Farrell output-oriented  efficiency scores  

Figure 3 shows E2 (output-increasing efficiency assuming variable returns to scale). Each bar 

in the diagram represents one of the 469 municipalities, sorted by increasing efficiency. The  

 

Figure 3: Sorted output-oriented efficiency scores 

 

height of the bars represents the efficiency of the DMU, while the width of the bar shows the 
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size measured by man-years (sum of trained nurses and other employees). Both large and 

small DMUs can be found in all parts of the diagram, with the exception that no large 

municipality is located in the (very inefficient) leftmost part of the diagram. The average 

effiency is 86%, while the efficiency of the average unit is 67% .  

 

 

Figure 4: The taxonomy of units in DEA efficiency analyses 

 
 

An overview of the taxonomy developed in Sections 2 and 3 for classification of units is 

given in Figure 4, together with the actual decomposition for the data set at hand.  In view of 

the relatively large number of observations it may be surprising that as many as 28 percent of 

the units are efficient. This may be due to the unusually high number of dimensions, 13 

variables in all. Since the efficient units span out the frontier technology it is to be expected 

that the number of exterior ones is higher than the interior ones, 75 and 25 percent 

respectively. Turning to the Farrell efficiency model (4) the self-evaluators represent 23 

percent of the efficient units.  As expected the relative share of exterior peers is larger in the 

group of self-evaluators than in the group of active peers, 86 versus 72 percent. Among the 

active peers that share of interior units is higher, 28 percent. This distribution is of importance 

for the empirical support of the frontier and the associated efficiency distribution. 
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Far out or alone in the crowd? 

In Table 3 the relative distance from the average unit is obtained by measuring each of its 

variables against the average for the sample (J). The interior units are on both sides of the 

average, and one of the four units is quite close to the sample average. None is close to either 

the small or large exterior units. It seems to be appropriate to use the expression “alone in the 

crowd.” 

 

Table 3. Relative size in percent of interior- and exterior self-evaluators compared with the sample 
average 

 
Self-evaluators  Inputs   Outputs 
Interior   Exterior Municipality          x1 x2 x3 y1 y2 y3 y4 y5 y6 y7 y8 y9 

Indre SE Ytre SE KomNr KomNavn SykepleiereAndre årsverAndr.�dr.utg. inst �0-66 inst 67+�(y2korttidsopphoSkjermet avenerom PU PB 0-66 PB 67+ HS 0-66
TRUE FALSE 425 Åsnes 6.17 3.66 -95.22 -0.40 59.34 17.19 7.20 16.35 3.30 -1.27 58.31 1.89
TRUE FALSE 616 Nes -17.43 -86.14 -5285.22 -1.40 -38.66 -42.81 -5.80 -16.65 -34.70 -20.27 -75.69 -13.11
TRUE FALSE 807 Notodden 4.27 49.86 1951.78 0.60 72.34 190.19 6.20 69.35 7.30 -17.27 89.31 5.89
TRUE FALSE 1567 Rindal -15.93 -93.34 -5790.22 -2.40 -35.66 -36.81 -4.80 -29.65 -40.70 -37.27 -115.69 -28.11
FALSE TRUE 101 Halden 39.37 266.76 5644.78 0.60 28.34 -36.81 -11.80 9.35 96.30 85.73 679.31 65.89
FALSE TRUE 213 Ski 19.47 59.66 6022.78 10.60 -10.66 -43.81 8.20 7.35 26.30 131.73 124.31 -10.11
FALSE TRUE 217 Oppegård 28.67 8.16 2597.78 2.60 -7.66 25.19 -11.80 18.35 20.30 7.73 92.31 132.89
FALSE TRUE 219 Bærum 289.27 1011.56 99923.78 28.10 655.84 627.19 131.20 681.35 380.30 337.73 1145.31 196.89
FALSE TRUE 430 Stor-Elvdal -21.03 -65.64 -4466.22 -3.40 -45.66 -55.81 -0.80 -32.65 -37.70 -34.27 -79.69 8.89
FALSE TRUE 615 Flå -27.93 -100.44 -6653.22 -3.40 -62.66 -87.81 -11.80 -45.65 -43.70 -43.27 -172.69 -33.11
FALSE TRUE 632 Rollag -25.33 -99.44 -6738.22 -2.40 -60.66 -100.81 -11.80 -41.65 -31.70 -41.27 -169.69 -8.11
FALSE TRUE 709 Larvik 107.27 406.16 18544.78 17.60 248.34 345.19 32.20 158.35 191.30 182.73 829.31 57.89
FALSE TRUE 806 Skien 109.87 488.86 31342.78 8.60 260.34 106.19 2.20 199.35 114.30 178.73 1171.31 109.89
FALSE TRUE 904 Grimstad 28.57 29.16 -174.22 -0.40 23.34 -25.81 22.20 -4.65 26.30 81.73 93.31 76.89
FALSE TRUE 941 Bykle -26.73 -104.84 -7010.22 -3.40 -63.66 -92.81 -6.80 -41.65 -47.70 -48.27 -204.69 -31.11
FALSE TRUE 1144 Kvitsøy -26.53 -130.24 -8496.22 -3.40 -83.66 -100.81 -11.80 -59.65 -48.70 -48.27 -200.69 -32.11
FALSE TRUE 1222 Fitjar -18.93 -87.74 -6606.22 -2.40 -61.66 -65.81 -3.80 -17.65 -37.70 -38.27 -154.69 -26.11
FALSE TRUE 1411 Gulen -21.23 -67.24 -5174.22 -1.40 -20.66 -95.81 -11.80 -37.65 -36.70 -43.27 -124.69 -22.11
FALSE TRUE 1612 Hemne -15.73 -78.54 -5231.22 -2.40 -56.66 -17.81 -0.80 -53.65 -42.70 -25.27 -86.69 12.89
FALSE TRUE 1632 Roan -27.53 -112.64 -7807.22 -3.40 -71.66 -87.81 -11.80 -46.65 -40.70 -48.27 -167.69 -31.11
FALSE TRUE 1702 Steinkjer 62.57 159.56 2438.78 4.60 74.34 99.19 42.20 44.35 29.30 80.73 365.31 42.89
FALSE TRUE 1714 Stjørdal 39.77 132.26 2631.78 16.60 85.34 112.19 4.20 84.35 74.30 64.73 128.31 0.89
FALSE TRUE 1723 Mosvik -22.33 -120.04 -8073.22 -3.40 -66.66 -92.81 -11.80 -49.65 -37.70 -45.27 -180.69 -30.11
FALSE TRUE 1839 Beiarn -24.13 -103.14 -6688.22 -1.40 -65.66 -85.81 -5.80 -40.65 -43.70 -46.27 -150.69 -26.11
FALSE TRUE 1868 Øksnes -14.83 -33.94 -4360.22 -0.40 -32.66 -64.81 -4.80 -12.65 -20.70 -20.27 -119.69 48.89
FALSE TRUE 1920 Lavangen -27.13 -112.64 -7495.22 -2.40 -67.66 -93.81 -7.80 -47.65 -38.70 -49.27 -180.69 -33.11
FALSE TRUE 3001 Bygdøy-Fro 12.67 14.36 13587.78 -3.40 -32.66 -113.81 -11.80 -10.65 -15.70 7.73 412.31 33.89
FALSE TRUE 3003 St.Hanshau 81.47 372.26 63035.38 1.60 343.34 190.19 26.20 289.35 16.30 18.73 738.31 -3.11
FALSE TRUE 3004 Sagene-To 75.17 466.56 73227.48 10.60 267.34 384.19 20.20 165.35 11.30 190.73 1178.31 59.89  

 

The exterior units are distributed with half above and half below the sample average. One unit 

has maximal sample values for two of the variables. There are several output variables with 

zero as the lower limit.  The variable “Institution 0-66” has seven exterior units with the 

minimum value of zero; while for “Closed ward” there are eight exterior units with the 

minimum value of zero. So given that “far out “ means both small and large units the exterior 

units deserve well this classification. The influence of extreme mixes may also be 

investigated, but due to all the possible comparison we leave this exercise out. 

 

The idea behind the two-stage approach is based on the distinction between discretionary and 

non-discretionary variables of the unit in question. The latter group of variables is also called 

environmental variables. When modeling the production process only variables that are under 

the control of the management may be considered relevant.  However, environmental 
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variables may be relevant for the performance of the units, but their influence may be 

regarded to be of a nature that is most appropriately revealed by studying the connection 

between some measure of performance and the environmental variables. Since the crucial 

point of being concerned with environmental variables is that there must be some influence on 

either the discretionary inputs or outputs of the environmental variables there is a good case 

for advocating a single stage approach and incorporating all relevant variables in one single 

model. One reason for treating environmental variables differently than standard outputs and 

inputs is that the way the variables interact with the standard production variables may be 

difficult to model. It may not be so clear-cut whether the variable is an input or an output.  

 

The formulation of the second stage is to establish a connection between the efficiency score 

and the environmental variables, zk: 

2,1o,Ji,)z,..,z(fE iK1oi =∈+= ε                                                                           (15) 

where εi is a random variable. There have been several  approaches to estimating (15). The 

first approach was to specify f(.) as a linear function and apply OLS (Seitz 1967, 1971). But 

there are two special features of the model (15). By definition the efficiency scores are 

restricted to be between zero and one,  

2,1o,Ji,1)z,..,z(fE0 iK1oi =∈≤+=≤ ε                                                               (16) 

and  using the DEA model (3) or (4) to generate the efficiency scores usually leads to a 

concentration of the values 1. As shown in Figure 4 we have 28 percent of the efficiency 

scores being at the upper limit of one. This has lead researchers to apply a censored regression 

like the Tobit model or truncated regressions. These approaches are strongly criticized in 

Simar and Wilson (2003). The fundamental point is made that the efficiency scores in (15) are 

estimates of the unknown efficiencies, and that these scores are serially correlated. Therefore, 

neither applying a Tobit or a truncated regression will solve this problem. A sequence of 

bootstrapping techniques is proposed that will yield proper confidence intervals of the 

parameters of  f(.). 

However, since the purpose of our paper is to demonstrate the importance of the role of 

exterior peers, we adopt the “easy way out” and use OLS to estimate a linear function using 

(15). The relation (15) is then interpreted just to represent an investigation of association and 

not to be a strict causality model. An advantage of OLS is that better diagnostics to 

characterize the covariations are available, like the multiple regression coefficient. 
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Table 3: Stage 2 regression results applying OLS to a linear model 

All units included*) Excluding outer SE Excluding all SE 

R2 0.1737 R2 0.2082 R2 0.1713

Variable Coeff. p-value Coeff. p-value Coeff. p-value 

Climate indicator -0.007 0.035 -0.006 0.056 -0.007 0.032

Share of private institutions 0.098 0.019 0.099 0.015 0.101 0.016

Free disposable income, 1996 -0.020 0.054 -0.028 0.01 -0.019 0.074

Share of users in home care -1.019 0 -1.089 0 -1.000 0

Share in home care of age group 0-66 1.823 0.17 1.437 0.282 1.814 0.172

Share in home care of age group 67-79 0.574 0.006 0.665 0.001 0.549 0.009

Share in home care of age group 80-89 0.270 0.004 0.261 0.004 0.271 0.004

Share in home care of age group 90+ 0.100 0.019 0.109 0.011 0.094 0.031

Share in inst. care of age group 0-66 24.785 0.019 27.615 0.009 24.957 0.018

Share in inst. care of age group 97-79 -1.072 0.011 -0.926 0.026 -1.060 0.012

Share in inst. care of age group 80-89 -0.101 0.524 -0.152 0.331 -0.097 0.542

Share in inst. care of age group 90+ 0.026 0.561 0.053 0.235 0.023 0.613

Constant term 1.527 0 1.562 0 1.516 0

*) Communities within the two major cities Bergen and Oslo are aggregated and one unit is removed from the 
data set 
 

Table 3 shows the result of an OLS regression using a linear model in (15). The p-values are 

also given, although they should not be taken at face value due to the inherent statistical 

problems with the approach, as mentioned above. We perform regressions with the complete 

data set, excluding the exterior self-evaluators, and also excluding the interior self-evaluators. 

The last regression is done to compare the effects with the second.  

 

The environmental variables represent non-discretionary background variables that experts 

have suggested may influence the efficiencies of municipalities. Climate indicator is a 

measure of the average temperature measured over the year in the municipality. It can also be 

seen as a proxy for amount of snow, altitude and distance from the coast. We note that it does 

not matter much to remove the interior self-evaluators, but removing the exterior ones 

changes both the regression coefficient and the p-value, indicating a weaker connection 

between efficiency scores and this variable. 

 

Share of private institutions is measured by how large share of the total number of institutions 
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are in the private sector (most often NGO’s). It would be better to measure this by the number 

of clients, but such data was not available. Possible interpretations of a positive (and low p 

values in all three regression models) parameter estimate are that the municipalities own care 

providers get a learning effect from presence of private service providers, or that private 

presence reduces inefficiency because they increase the fear of privatization in the municipal 

nursing sector. 

 

Free disposable Income, 1996 is measure of the relative wealth of the municipality (per 

inhabitant). It is calculated by finding the difference between the actual income in the 

municipality, and the “required expenses” in the municipality in other sectors than care for the 

elderly (i.e. schools, roads etc.).  Required expenses are calculated on demographical 

variables and other factors exogenous to the municipality. (See Aaberge and Langørgen 

(2003) for the details behind the construction of this indicator.) Data for 1997 (the year all the 

other data is from) was also available, but we reasoned that the municipality’s decision on 

how it want provide care for the elderly is more strongly based on income in the previous than 

in the current year. This has some statistical support in that the ’96 variable has larger 

explanatory power measured by R2 of the model and T-value of the parameter estimate. The 

p-value for the parameter estimate for this variable improves when the exterior self-evaluators 

are removed from the regression model. One possible explanation of the negative parameter 

estimate is that a “rich” municipality might use the extra resources on higher quality (not 

picked up by the DEA model) and/or allowing inefficiency in production of services. 

 

Share of users of home care is a measure of the size of the share of home care clients in 

relation to all the clients getting nursing services. This coefficient has a negative parameter 

estimate. This is an indication that the technical efficiency tends to be lower when a larger 

part of the municipality’s clients is in home care.  This is interesting, because it is a measure 

of the product mix in the municipality. The DEA method takes into account the case mix 

when estimating the frontier. However, the distance between the frontier and the average unit 

behind the frontier might vary with case mix. It is important to remember that since we have 

no price information on the products (home care and institutionalized care), we do not know 

which group has the highest total efficiency. Without price information we can only estimate 

technical efficiency and scale efficiency, not allocative efficiency, which is also a component 

of total efficiency. Thus, we can make no recommendation of what is better, only point out 

that the variation of technical efficiency seem to grow with the share of home based nursing. 
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Share in home care of users in age group…(four age groups) measures how large share of the 

total population in an age group gets home based nursing services. With the exception of the 

lowest age group (0-66) all of the parameter estimates is statistically significant and positive. 

This supports our hypothesis that the higher the coverage of home based nursing, the lower 

the required resource usage per client. The reasoning is that the nursing sector behaves as if it 

ranks its potential clients from the ones that require the most nursing to the ones that requires 

the least, and that it uses this ranking as a prioritized list of which clients to accept first. If the 

municipality has a larger share of the population in an age group as its clients, we expect the 

average required resource usage per client to be lower because the average client is healthier. 

 

Share in inst. care of users in age group … (four age groups) is similar to the variables 

described above, but for institutionalized care. The parameter estimate for the youngest age 

group (0-66) is positive and statistically significant. It is a priori known that some of these 

clients require a lot of resource usage, but remember that the number of users in this group 

(inst. 0-66) is included in the DEA model. It might be that the municipalities who has a 

relatively large share of these users compared to their total population have healthier clients 

on average. The only other age group in inst. care that gets a statistically significant parameter 

estimate is 67-79 where the sign is negative. This is an indication that the “youngest of the 

oldest” require more resource usage in inst. care than the other groups above 67. It might be 

that it more for difficult for the clients in this relatively young age group to get inst. care, and 

that the clients who actually get it requires more resources on average than in the older age 

groups. 

 

Removing the exterior self-evaluators can make a difference. In this case the explained share 

of the total variance in the model increased  as R2 rose from 17% to 21%. Both coefficient 

estimates and p-values change, sharpening the estimates of seven coefficients while only three 

had increased p-values3. While numerical changes are small, they are still sizeable 

considering that only 25 out of 469 observations (5%) were removed. Essentially, we have 

removed the units that are most likely not to contain any information, i.e. to be pure noise.  

 

                                                 
3 In contrast, excluding all self-evaluators, both interior and exterior, would have lowered R2 and decreased p-
values only for three coefficients and increased them for seven. 
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This is of course not conclusive evidence that one approach is better than the other. The point 

we want to make is that it can make a difference. We have already argued that it makes 

theoretical sense to remove the exterior self-evaluators. It may be added that in Simar and 

Wilson (2003) it is conjectured that the bootstrap works better the denser the data. Since we 

have removed data points in regions that by definition are as “thin” as possible, the bootstrap 

should also work better. In sum, we feel that we have made a solid case for the advantages of 

identifying and removing the exterior self-evaluators when doing a two-stage analysis in a 

DEA setting. 

 

5. Conclusions 
 

The units found strongly efficient in DEA studies on efficiency can be divided into self-

evaluators and active peers, depending on whether the peers are referencing any inefficient 

units or not. The contribution of the paper starts with subdividing the self-evaluators into 

interior and exterior ones. The exterior self-evaluators are efficient “by default”; there is no 

firm evidence from observations for the classification. Self-evaluators may most naturally 

appear at the “edges” of the technology, but it is also possible that self-evaluators appear in 

the interior. It may be of importance to distinguish between the self-evaluators being exterior 

or interior. Finding the influence of some variables on the level of efficiency by running 

regressions of efficiency scores on a set of potential explanatory variables is an approach 

often followed in actual investigations. Using exterior self-evaluators with efficiency score of 

1 in such a “two-stage” procedure may then distort the results, because to assign the value of 

1 to these self-evaluators is arbitrary. But regarding interior self-evaluators they may have 

peers that are fairly similar. They should then not be dropped when applying the two- stage 

approach. 

 

A method for classifying self-evaluators based on the additive DEA model, either CRS or 

VRS, is developed. The exterior strongly efficient units are found by running the enveloping 

procedure “from below”, i.e. reversing the signs of the slack variables in the additive model 

(1), after removing all the inefficient units from the data set. Which units of the strongly 

efficient units from the additive model (1) that turn out to be self-evaluators or active peers, 

will depend on the orientation of the efficiency analysis, i.e. whether input-or output 

orientation is adopted. The classification into exterior and interior peers is determined by the 
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strongly efficient units turning out to be exterior ones running the “reversed” additive model 

(9). 

 

The exterior self-evaluators units should be removed from the observations on efficiency 

scores when performing a two-stage analysis of explaining the distribution of the scores. The 

application to municipal nursing- and home care services of Norway shows significant effects 

of removing exterior self-evaluators from the data when doing a two-stage analysis. Thus the 

conclusions as to explanations of the efficiency score distribution will be qualified taking our 

new taxonomy into use. 
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